
WHAT IS. . . THE SHAPE OF A LATTICE?

ANDREAS WIESER

Abstract. This are the notes for my talk given in the What is..? -seminar in

Zurich on 25. October 2018.

In this talk we introduce the shape of a lattice (here a discrete subgroup of
Euclidean space) which roughly captures the form of a fundamental parallelo-

tope in it. We will particularly focus on primitive integral lattices and then

address old and new questions surrounding such lattices and their shapes. The
main (equidistribution) conjecture we discuss answers amongst other things the

question whether or not the orientations of such lattices yield any information

about their shapes and vice versa.

Let me begin by first explaining what a lattice is (for the purposes of this talk).

Definition 1.1. A lattice Λ ⊂ Rn is a discrete subgroup.

One can prove that any lattice Λ is of the form

Λ = Zv1 + . . . + Zvk

for v1, . . . , vk ∈ Rn. The minimal such number k is called the rank of Λ.

Figure 1. A lattice Λ of rank k = 2 viewed as a subset of the
subspace ΛR spanned by Λ.

The volume of the drawn parallelogram is what one usually calls the covolume of
the lattice. Another quantity which one can attach to a lattice is the discriminant
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which is the determinant of the matrix〈v1, v1〉 · · · 〈v1, vk〉
...

...
〈vk, v1〉 · · · 〈vk, vk〉


or in other words just the square of the covolume.

1.1. Parametrizing lattices of full rank. Let us for a moment now focus on
lattices of full rank, i.e. with rank equal to n. By what we had before, any such
lattice Λ can be written as Λ = gZn where g ∈ GLn(R). Note that |det(g)| =
covol(Λ). We say that Λ is unimodular, if it has covolume 1 or equivalently if
Λ = gZn for g ∈ SLn(R). The space of unimodular lattices is defined as

Xn = {Λ : Λ unimodular} ' SLn(R)
/

SLn(Z).

Dynamics and ergodic theory on this quotient has been very successful in encoding
statements from number theory (e.g. from Diophantine approximation). The rea-
son why one is able to prove many things using ergodic theory on this quotient is
that SLn(Z) is a lattice in SLn(R) i.e. there is a finite SLn(R)-invariant measure
on Xn.

The shape of a lattice of rank k will be an element of

Xk = SO(k)

∖
Xk

i.e. the space of lattices up to rotation1.
To visualize X2, note that SL2(R) / SO(2) can be identified with the hyperbolic

plane via Moebius transformations. Thus, X2 is the hyperbolic plane folded up
under the SL2(Z)-action by Moebius transformations. A fundamental domain is
given as in the following picture.

1.2. Definition of the shape. Let Λ < Rn be a lattice of rank k. We fix a
rotation r ∈ SO(n) with the property that r.ΛR = Rk × {0}n−k = Rk, that is, we
rotate the k-dimensional subspace in which Λ lies to a fixed reference subspace that
we simply call Rk. Since r.Λ < Rk is a lattice of full rank, we may stretch it evenly
in all directions to obtain a unimodular lattice in Xk.

1In some cases, the shape will in fact be an element of O(k) \ PGLk(R) / PGLk(Z) but we will
ignore this issue here.
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Definition 1.2 (Shape). The shape of the lattice Λ is the point

[Λ] = SO(k) 1

covol(Λ)
1
k
rΛ ∈ SO(k)

∖
Xk = Xk.

Taking the quotient with SO(k) asserts that there is no dependency on the choice
of r in the definition of the shape2.

1.3. Distribution of planes and shapes. Let us now fix a lattice of full rank
and consider only rank k sublattices of that lattice. For concreteness we take the
integer lattice Zn and call a lattice Λ < Rn integral if Λ ⊂ Zn. Note that the
discriminant of an integer lattice is always a positive integer.

Such an integral lattice Λ is primitive if it is not contained in any larger sublattice
of Zn of the same rank. Equivalently, Λ is primitive if

Λ = ΛR ∩ Zn.

For any positive integer d we define the finite set

Rk,n
d = {Λ : primitive integral lattice of rank k and discriminant d}.

One can now ask various questions of very different flavour for Rk,n
d . For instance

When is Rk,n
d non-empty?

To the author’s knowledge there is no complete answer to this question. There are
however some cases in which there is an answer:

• R1,3
d is non-empty if and only if d 6≡ 0, 4, 7 mod 8. This is in essence Le-

gendre’s theorem on sums of three squares proven in full by Gauss [Gau86].

• R2,4
d is non-empty if and only if d 6≡ 0, 7, 12, 15 mod 16 – see for example

[AEW19].

• R2,n
d for n ≥ 5 is always non-empty (Mordell [Mor32]).

In general, such a question is strongly connected Siegel’s mass formula which aims
at counting representations of forms in few by forms in many variables. This also
yields the question

If non-empty, how large is Rk,n
d ?

Let us however not dwell on that and ask how these solutions (if you will) are
distributed.

Conjecture 1.3 (Equidistribution of planes and shapes). Let n ≥ 3 and k ≤ n
with n− k ≥ 2. If k ≥ 2 the set

J k,n
d = {(ΛR, [Λ], [Λ⊥ ∩ Zn]) : Λ ∈ Rk,n

d }
equidistributes to the uniform probability measure on Grk,n(R) × Xk × Xn−k. If
k = 1, the analogous statement holds for the pairs (ΛR, [Λ

⊥ ∩ Zn]).

This means that, whenever you give yourself, say, a nice measurable set A of half
the volume in Gr2,4(R) in the limit you will still find all kinds of shapes under the
given restriction on the subspace. Conversely, one can fix an approximate shape
the lattice should have and also an approximate shape its orthogonal complement
should have and one will always find for large enough discriminants a lattice with
these given approximate shapes.

To the author’s knowledge, the progress to the conjecture is the following:

2Up to a slight issue with orientation; this is the same problem as the one mentioned in the
footnote on page 2.
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• Maass [Maa56], [Maa59] in the 50’s and W. Schmidt [Sch98] in the 90’s:
the pairs (ΛR, [Λ]) equidistribute when Λ varies over the primitive integral
lattices of rank k with discriminant ≤ d (!).
• Aka, Einsiedler, Shapira [AES16b], [AES16a]: k = 1 where for n = 3

additional congruence conditions on d need to be assumed.
• Aka, Einsiedler, W. [AEW19]: k = 2 and n = 4 also under additional

congruence assumptions. Here, the result is in fact much stronger as it also
considers 2 further natural shapes that one can attach to each lattice.

The remaining cases will be treated in an upcoming preprint by Menny Aka and the
author (also under additional congruence conditions). It is worthwhile remarking
that in all of the above cases the congruence conditions are an artefact of the
dynamical proofs.

1.3.1. About the dynamical proofs and the congruence condition. The theorems in
[AES16b],[AES16a] and [AEW19] each follow from an equidistribution result for
orbits in a locally homogeneous product space3

Y1 × Y2 × Y3

under the stabilizer subgroup of subspaces L = spanR(Λ)

HL = {g ∈ SOn : g.L = L}.
Over the reals, we have an action of a compact group HL(R) ' SOk(R)×SOn−k(R)
(up to finite index), which cannot yield any interesting dynamical behaviour. The
way to avoid this, one considers instead the group of Qp-points! If Q is a positive-
definite rational quadratic form, the group SOQ(R) is compact, but SOQ(Qp) might
not be. In either of the works mentioned above, the imposed congruence condition
asserts that for a given discriminant D satisfying this congruence condition, the
stabilizer subgroup of any plane of this discriminant is isotropic. In order to obtain
an action of HL(Qp) one passes to an extension.
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