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Abstract. These are lecture notes used in a talk in an informal reading course

in Zurich, fall 2019. The aim of these notes is to deduce arithmeticity of lattices
in higher-rank real groups from Margulis’ superrigidity result.
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1. Introduction

The aim of these notes is to prove the following theorem due to Margulis [5].

Theorem 1.1. Let G = G(R) be the real points of a Zariski-connected semisimple
R-group1 G. Suppose that G has no compact factors and that rankR(G) ≥ 2. Then
any irreducible lattice in G is arithmetic.

We will recall the notion of an arithmetic lattice below in Section 2. As a
blackbox for these notes, the following version (as proven earlier in the reading
course mentioned in the abstrace) of the superrigidity theorem of Margulis will be
assumed.

Theorem 1.2 (Superrigidity). Let G = G(R) be the real points of a semisimple
R-group. Suppose that G has no compact factors and that rankR(G) ≥ 2. Let Γ < G
be an irreducible lattice.

Let H be a simple k-group where k is a local field of characteristic zero2. Suppose
that ϕ : Γ→ H = H(k) is a morphism (of abstract groups) so that ϕ(Γ) is Zariski
dense and unbounded. Then ϕ : Γ→ H extends to a continuous morphism G→ H.

1By this we mean a real linear algebraic group defined over R.
2Any such local field is either R, Q or a finite extension of Qp.
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These notes are very much influenced by Benoist’s lectures notes [1] on the same
topic and by the book [10] of Zimmer. We will proceed as follows:

• In Section 2 we recall the definition of arithmetic lattices.
• In Section 3 we will give a slight reformulation of Margulis superrigidity

theorem (Theorem 1.2). We recommend skipping Section 3 and returning
to it in the course of the proof.
• In Section 4 we construct a faithful representation of G in which Γ acts by

matrices with algebraic entries (in fact, entries in a number field). The rep-
resentation will be constructed by considering the space of regular functions
spanned by the G-orbit of Tr(Ad(g)). Hence, the crucial input is to show
that Tr(Ad(γ)) is algebraic for γ ∈ Γ. For this, we will use Theorem 1.2.
• In Section 5 we will proof the arithmeticity theorem using restriction of

scalars
• In Section A of the appendix, we recall the construction of the restriction

of scalars for linear algebraic groups.

2. Arithmetic lattices

Recall that by a theorem of Borel and Harish-Chandra [2] for any Q-group G <
SLN with no non-trivial Q-characters the group

G(Z) = G(Q) ∩ SLN (Z)

is a lattice in G(R). This is the first, basic example of what we will define to be an
arithmetic lattice. A more elaborate example is the following:

Example 2.1 (An arithmetic lattice from compact quotient). Consider the qua-
dratic form

q(x) = x2
1 + x2

2 + x2
3 −
√

2x2
4

which is defined over Q(
√

2). The group SOq is then clearly only defined over

Q(
√

2) and not over Q. We consider the subgroup Γ = SOq(Z[
√

2]) of SOq(R).
By restriction of scalars3 we may however attain a semisimple Q-group G with

G(R) ' SOq(R)× SOqσ (R).

Here, σ is the non-trivial Galois automorphism of Q(
√

2) and qσ is the quadratic
form obtained by applying σ to the coefficients of q. That is, qσ is the positive
definite form q(x) = x2

1 + x2
2 + x2

3 +
√

2x2
4. In particular, SOqσ (R) is compact.

Taking the image of the lattice

G(Z) ' {(g, gσ) : g ∈ SOq(Z[
√

2])}

under the projection to SOq(R) yields Γ. Since SOqσ (R) is compact, Γ must be a
lattice in SOq(R).

Recall that two lattices Γ1,Γ2 in a locally compact group G are said to be
commensurable if Γ1 ∩ Γ2 has finite index in both Γ1 and Γ2.

3To make this note more self-contained, we will recall the construction in Appendix REF in
the case of linear algebraic groups.



ARITHMETICITY OF LATTICES IN HIGHER RANK REAL GROUPS 3

Definition 2.2 (Arithmetic lattices). Let G = G(R) be the real points of a Zariski-
connected semisimple R-group G with trivial center. A lattice Γ < G is said
to arithmetic if there exists a semisimple Q-group H and a continuous surjective
morphism H(R)→ G with compact kernel so that Γ is commensurable to the image
of H(Z).

More generally, if G has non-trivial center, we say that a lattice Γ < G is
arithmetic if the image of Γ under the adjoint representation Ad : G → Ad(G) is
arithmetic in Ad(G)(R).

Remark 2.3 (Non-arithmetic lattices). If G = GR has real rank 1, then non-
arithmetic lattices might exist.

• For G = SL2 there exists many non-arithmetic lattices. For example,
Takeuchi [9] classifies all triangle groups which are arithmetic and in par-
ticular shows that there are only finitely many arithmetic ones.
• In G = SO(n, 1) non-arithmetic lattices were constructed by Gromov and

Piatetski-Shapiro [4] by ’interbreeding’ two arithmetic lattices.
• In G = SU(2, 1) and G = SU(3, 1) Mostow [7] constructed non-arithmetic

lattices.

3. A minor reformulation of the superrigidity theorem

In the applications of Theorem 1.2 used in the proof of Theorem 1.1 the following
minor reformulation is useful.

Corollary 3.1. Let G, G,Γ be as in Theorem 1.1. Let k be a local field of charac-
teristic zero and let H be a simple k-group. Let φ : Γ → H = Hk be a morphism
such that φ(Γ) is Zariski dense.

• If k is non-Archimedean, then φ(Γ) is bounded.
• If k = R, then φ extends to a rational morphism G→ H.

Proof of the non-archimedean case. Assume that k is non-archimedean and sup-
pose that φ(Γ) is unbounded. Then there exists a continuous extension φ : G→ H.
But H is totally disconnected and G has only finitely many connected components.
Thus, φ must have finite image which contradicts the Zariski-density of φ(Γ). �

For the archimedean case we need the following.

Lemma 3.2. Let G = G(R) be the real points of an R-group G and let K < G be
a compact subgroup. Then K is Zariski-closed in G.

Proof. Suppose that G < SLN and let g 6∈ K. By Urysohn’s lemma and the Stone-
Weierstrass theorem we may find a polynomial p0 on MatN such that p0(k) ≤ 1

3

and p0(kg) ≥ 2
3 for all k ∈ K. Define

p1(h) =

∫
K

p0(kh) dmK(k)

where mK is the normalized Haar measure on K. This is a polynomial function as
its attained from integration the coefficients of p0(k·) against k. By construction,
p1|K is constant and bounded above by 1

3 . Also, p1(g) ≥ 2
3 . Letting p = p1−p1(id)

we attain a polynomial vanishing on K that gives a non-zero value to g. �
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Proof of Corollary 3.1 for k = R. By Theorem 1.2 we need to show that φ(Γ) is

unbounded. Suppose not and let K = φ(Γ) < G be the compact group φ(Γ)
generates. But by Lemma 3.2 K is Zariski-closed which contradicts the Zariski-
density of φ(Γ). �

4. Lattice elements have algebraic entries

Let G be as in Theorem 1.1 and assume in addition that G has trivial center4.
The aim of this section is to show the following:

Proposition 4.1. There is a number field K (i.e. a finite extension of Q) with
a real embedding and a faithful representation ι : G → GLN over R such that
ι(Γ) ⊂ GLN (K).

We will use the superrigidity theorem (Theorem 1.2) in the proof, but remark
that this is not strictly speaking necessary – see for instance [6, Section 2.1] and the
reference therein. As an input, we will assume the following proposition without
proof.

Proposition 4.2. Any lattice in G′ = G′(R) for an R-group G′ is finitely gener-
ated.

Remark 4.3. Proposition 4.2 in this generality is due to Raghunathan [8]. When
G′ does not contain any simple factor of rank 1, the proposition follows from Prop-
erty (T).

Assume that G < SLN . By Proposition 4.2 we may choose a finite generating
set of Γ. Letting K be the field extension of Q generated by all entries of lattice
elements in this generating set, we obtain a finitely generated field extension K/Q
with Γ ⊂ SLN (K). Our aim is now to show that K may be chosen to be finite over
Q by choosing a potentially different linear representation. We will use Theorem 1.2
as well as the following fact to do so.

Lemma 4.4. Let K/Q be a finitely generated extension of Q. Then there exists
for any λ ∈ K transcendental and for any prime p an embedding

φ : K ↪→ k

into a finite extension k/Qp with |φ(λ)| > 1.

Proof. Let λ1, . . . , λn be a transcendence basis of K with λ1 = λ. This means
that K ′ = Q(λ1, . . . , λn) is isomorphic to the function field over K in n-variables
and that K ′/K is algebraic. Since K ′/K is also finitely generated, it is a finite
extension.

Since Qp is uncountable, it has infinite transcendence degree as an extension of
Q. Given any choice of algebraically independent a1, . . . , an ∈ Qp. we may thus
find an embedding

φ′ : K ′ → Qp
by mapping λi to ai for every i. By multiplying a1 with a large enough power of p
we may assume that |a1| > 1. Thus, φ′ satisfies |φ′(λ)| > 1.

Since K/K ′ is algebraic, any embedding K ′ → Qp for an algebraic closure Qp
may be extended to an embedding K → Qp. We thus obtain an embedding φ : K →
k for a finite extension k/Qp. By compatility of norms we still have |φ(λ)| > 1. �

4By virtue of the definition of arithmetic lattices in Definition 2.2 this is no restriction.
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Lemma 4.5. For any γ ∈ Γ the trace Tr(Ad(γ)) is an algebraic number.

Proof. Let us show that any eigenvalue of γ must be algebraic over Q which clearly
implies the lemma. Let K be the field generated by the coefficients of Ad(γ) (in
some basis of Lie(G)) where γ runs over a finite generating set of Γ. Notice that
K/Q is in particular of finite transcendence degree. We may replace K by a finite
extension so that the characteristic polynomial of γ is completely split over K.

Let λ ∈ K be an eigenvalue of Ad(γ) and suppose that λ is transcendental. Let
k be a finite extension of Qp and let ι : K → k be as in Lemma 4.4 for λ. We view
K ⊂ k.

Let G′ be a k-simple factor of G such that λ is an eigenvalue of the restriction
of Ad(γ) to Lie(G′). Let us now consider the composition φ of the maps

Γ ↪→ Gk → G′k

where we view Γ as a subgroup of Gk via K ⊂ k and where Gk → G′k is the
projection. Note that φ(γ) is by construction an unbounded element and that φ(Γ)
is Zariski-dense. This is a contradiction by the superrigidity theorem (Corollary 3.1)
and hence λ is algebraic over Q. �

Proof of Proposition 4.1. We construct an injective morphism ι : G → GLN such
that ι(Γ) ⊂ GLN (Q). This is indeed sufficient: as Γ and hence also ι(Γ) are finitely
generated (Proposition 4.2), we may let K be the field generated by all matrix
entries of a finite generating set of ι(Γ) to obtain ι(Γ) ⊂ GLN (K).

Let us consider the regular function

ϕ(g) = Tr(Ad(g))

on G. We let G act on regular functions ψ via g.ψ(h) = ψ(hg). Viewing G < GLn
for some n if ψ is the restriction of a polynomial of degree d to G then so is g.ψ.
Hence, the vector space

V = 〈g.ϕ : g ∈ G〉

is finite-dimensional.
Since Γ < G is Zariski-dense, V is spanned by γ.ϕ for γ ∈ G and we may choose

a basis of V of elements of the form γ1.ϕ, . . . , γN .ϕ for γ1, . . . , γN ∈ Γ. Write
ϕi = γi.ϕ for i = 1, . . . , N .

We now aim at showing that the Γ-action on V represented in the above basis
is given by GLN (Q)-matrices. For any γ ∈ Γ let us write

γ.ϕi =

N∑
j=1

ai,j(γ)ϕj .(4.1)

Note that any linear relation between the restriction of ϕ1, . . . ϕN to Γ extends to G
and hence ϕ1|Γ, . . . , ϕN |Γ are linearly independent. We may thus find η1, . . . , ηN ∈
Γ such that the matrix B = (ϕi(ηj))ij is invertible. Evaluating (4.1) at ηk we
obtain

γ.ϕi(ηk) =

N∑
j=1

ai,j(γ)ϕj(ηk)
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By invertability of B we obtain that

aij(γ) =
∑
k

γ.ϕi(ηk)(B−1)kj

Now note that γ.ϕi(ηk) = ϕi(ηkγ) = Tr(Ad(ηkγγi) ∈ Q. Similarly, B ∈ GLN (Q)
and so aij(γ) ∈ Q as claimed.

It remains to show that ι is injective. So suppose that ι(g) = id so that for any
x ∈ G

Tr(Ad(x) Ad(g)) = Tr(Ad(xg)) = g.ϕ(x) = ϕ(x) = Tr(Ad(x)).

Evaluating at x = g for any n ∈ N and iterating we obtain that Tr(Ad(gn)) =
Tr(Ad(g)). Also, putting x = g−1 we obtain that Tr(Ad(g)) = Tr(Ad(id)) =
dim(g). Thus, Ad(g) needs to be unipotent. This shows that the kernel of ι consists
of unipotent elements. But since ι is a homomorphism, the kernel is also a normal
subgroup and hence is either finite or semisimple. By the assumption on the center
it cannot be finite. Also, no semisimple group can consist of unipotent elements
and hence the proposition follows. �

5. Proof of Theorem 1.1

We now turn to proving Theorem 1.1. By Proposition 4.1 we may assume that
there is some number field K ⊂ R and that G < SLN for some N ≥ 2 so that
Γ ⊂ SLN (K). Since Γ < G is Zariski-dense by the Borel density theorem (see for
example [3]) we obtain that G is defined over K. We let φi : K → C for i = 1, . . . , d
be the field embeddings of K with φ1 = id.

We now perform restriction of scalars and let

ϕ : G(K)→ ResK/Q(G)(Q), p : ResK/Q(G)(Q)→ G(K)

be the natural isomorphisms so that ϕ ◦ p = id. See for example Appendix A for a
quick and self-contained construction of the restriction of scalars.

Claim. The Q-group H = ϕ(Γ) is semisimple and the restriction of the projection
ResK/Q(G)→ G defined over K is surjective.

Proof. Over the Galois closure, we may identify ResK/Q(G) =
∏
i G

φi so that
Γ → ResK/Q(G) is given by γ 7→ (φi(γ))i=1,...,d. As ϕ(Γ) is Zariski-dense and the

projection pi : H(Q) → Gφi(φi(K)) contains φi(Γ), H surjects onto each Gφi . In
particular, it surjects onto each Q-simple factor of ResK/Q(G). Such a group needs
to semisimple. �

Identifying ResK/Q(G) =
∏
i G

φi as in the above proof, recall that the projection

onto of ResK/Q(G) the first factor Gφ1 = G is defined over K (and in particular
over R). We denote the restriction to H by p : H→ G as well. We will show that
p : H(R)→ G(R) has compact kernel and that the image of H(Z) is commensurable
to Γ.

Lemma 5.1. There exists a subgroup of ϕ(Γ) of finite index that is contained
in HZ.

Proof. Since Γ is finitely generated, there exist finitely many primes p1, . . . , ps such
that

ϕ(Γ) ⊂ H(Z[p−1
i : 1 ≤ i ≤ s])
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We now fix one of these primes p = pi and consider for any Qp-simple factor H′ of
H the composition

f : Γ→ H′(Q)→ H′(Qp)

By the superrigidity theorem (cf. Corollary 3.1) f(Γ) needs to be bounded and
hence contained in a compact open subgroup K. The index of H(Zp) in K is finite
and hence the preimage Γ′ of the identity coset under the map Γ → K/H(Zp)
satisfies

ϕ(Γ′) ⊂ H(Z[p−1
i : 1 ≤ i ≤ s, pi 6= p]).

Proceeding like this for all remaining primes yields the lemma. �

Note that the projection p : H(R)→ G(R) is surjective as its image contains Γ.
By Lemma 5.1, Γ and the image of HZ are commensurable.

It thus remains to show that the kernel of p in H(R) is compact. So suppose
that F is an R-simple factor of the kernel ker(p) with the property that F(R) is
non-compact. Let π be the projection onto this factor. Then π(ϕ(Γ)) is Zariski-
dense in F and by superrigidity (cf. Corollary 3.1) we obtain a continuous morphism
ψ : G(R) → F(R) extending π ◦ ϕ. In fact, ψ can be seen to be rational. Now
write (up to isomorphism) H = GFF′ where F′ is the product of all other simple
factors of ker(p). Then ϕ(Γ) is contained in the Zariski-closed subgroup graph(ψ)F′.
By Zariski-density of ϕ(Γ) this is ridiculous and we obtain that ker(p) has to be
compact. This proves Theorem 1.1.

Appendix A. Restriction of scalars

To deduce the arithmeticity theorem (Theorem 1.1) from Proposition 4.1 and
the superrigidity theorem (Theorem 1.2) we used restriction of scalars, which we
recall here. This is a rather general discussion for which we let K be a number field
and G be any K-linear algebraic group.

A.1. Construction of the restriction of scalars. Choose a basis a1, . . . , ad of
K as a Q-vector space where d = [K : Q]. The choice of basis for K as a Q-vector
space yields an embedding of Q-algebras

ι : K ↪→ Matd(Q).

Indeed, letting λ ∈ K act on K by left-multiplication we obtain a Q-linear map
Lλ : K → K which we may represent in the basis a1, . . . , ad. One checks that ι is
indeed a morphism of Q-algebras. Also, it is injective as Lλ = id implies Lλ(1) = 1
and hence λ = 1.

The map ι induces also for any n ∈ N an embedding of Q-algebras

ι : Matn(K) ↪→ Matn(Matd(Q))

by applying ι to every entry. Note that as a Q-vector space Matn(Matd(Q)) '
Matnd(Q) by viewing elements of Matnd(Q) as n × n-matrices whose entries are
d × d matrices (block matrices). For any polynomial p ∈ K[X11, . . . , Xnn] we
obtain a polynomial map

p̃ : Matn(Matd(Q))→ Matd(Q)
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Indeed, if pι is the polynomial in Matd(Q)[X11, . . . , Xnn] attained by applying ι to
the coefficients of p we may evaluate pι on Matn(Matd(Q)) to get p̃. By construc-
tion, the following diagram commutes:

Matn(K) K

Matn(Matd(Q)) Matd(Q)

ι

p

ι

p̃

We denote by V ⊂ Matn(Matd) ' Matnd be the subspace (commutative subal-
gebra) defined by the image of ι (which is defined over Q). Let IK be the ideal of
K-rational functions vanishing on G. We define H to be the subvariety of V defined
by the vanishing of p̃ for p ∈ IK . This is a variety defined over Q by definition.

We implicitly extend ι to a map

ι : Matn(K ⊗Q A)
∼−→ V(A) ⊂ Matn(Matd(A)).

The above commutative diagram shows that ι(G(K ⊗Q A)) = H(A). Thus, H is a
Q-subgroup of GLnd with

H(A) ' G(K ⊗Q A)

given by ι. In particular, we have an isomorphism G(K) ' H(Q) given by ι. We
shall call H the restriction of scalars of G over the extension K/Q and denote it
by ResK/Q(G).

Example A.1. Let K = Q(
√
d) for d ∈ Z 6= {0, 1} square-free be a quadratic field.

Then a Q-basis of K is given by 1,
√
d and for any a+ b

√
d ∈ K we have

(a+ b
√
d) · 1 = a+ b

√
d, (a+ b

√
d) ·
√
d = db+ a

√
d.

Thus, the above map ι : K ↪→ Mat2(Q) is given by

ι : a+ b
√
d ∈ K 7→

(
a db
b a

)
.

Considering now for instance the K-group G = SL2 we obtain that ResK/Q(SL2)
consists of matrices of the form

a1 db1 a2 db2
b1 a1 b2 a2

a3 db3 a4 db4
b3 a3 b4 a4


under the additional equation(

a1 db1
b1 a1

)(
a4 db4
b4 a4

)
−
(
a2 db2
b2 a2

)(
a3 db3
b3 a3

)
=

(
1 0
0 1

)
.

A.2. The restriction of scalars over the Galois closure. Let us denote by
φi : K → C for i = 1, . . . , d the distinct field embeddings of K. For concreteness,
one may write K = Q(ξ) for some ξ ∈ K in which case any field embedding is
defined by mapping ξ to one of the other roots of the minimal polynomial of ξ. We
let L be the Galois closure of K (i.e. the field generated by all roots of the minimal
polynomial of some ξ as above). In particular, φi(K) ⊂ L for any i = 1, . . . , d.
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Using the above field embeddings we attain for any n ∈ N an embedding

φ : Kn → (Ln)d, (x1, . . . , xn) 7→
(
(φi(x1), . . . , φi(xn))

)
i=1,...,d

.

If B ∈ Matn(K) and x ∈ Kn then φi(Bx) = φi(B)φi(x) where φi(x) is attained by
applying φi componentwise and the same holds for φi(B). Let φ(B) be the map on
(Ln)d given by applying φi(B) to the i-th vector for every i. Identifying (Ln)d with
Lnd by taking first the standard basis of the first copy of Ln, then the standard
basis of the second copy and so on, we may view φ(B) as a block-diagonal matrix
whose blocks are φ1(B), φ2(B), . . . , φd(B) in this order. The definition of φ and
φ(B) gives the following commutative diagram

Kn (Ln)d

Kn (Ln)d

B

φ

φ(B)

φ

On the other hand, the choice of basis of K yields an isomorphism ψ : K → Qd
which by construction of ι satisfies for any B ∈ Matn(K)

Kn (Qd)n

Kn (Qd)n

B

ψ

ι(B)

ψ

The matrix5 T = φ ◦ ψ−1 with entries in L is invertible as ψ is bijective and φ is
injective. Putting the above considerations together and tensoring with L we also
obtain that the diagram

(Ld)n (Ln)d

(Ld)n (Ln)d

ι(B)

T

φ(B)

T

commutes. Thus, conjugation by T brings ι(B) into block-diagonal form. In the
following we will identify both (Ld)n and (Ln)d with Lnd in the fashion explained
above.

For any m ∈ N let ∆m be the rational subspace of Matmd consisting of block-
diagonal matrices of size m×m. By the above we have a linear injection

cT : v ∈ V 7→ TvT−1 ∈ ∆n.

Since dim(V) = dim(∆n) = dn2 this is an isomorphism (defined over L).

5Explicitly, a quick computation shows that it is a block matrix with d×d-many square blocks

Tij ∈ Matn(L) for 1 ≤ i, j ≤ d where Tij satisfies that only the j-th row is non-zero and is given

by (φi(a1), . . . , φi(ad)).
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Returning to the group G and its restriction of scalars H we want to analyse the
conjugate of H by T . Denote by Gi < GLn the group defined by pφi for p ∈ IK .
Then φ yields a map φ : G →

∏
i G

i. Viewing
∏
i G

i as diagonally embedded in
GLnd this is the same map φ as above (when restricted from Matn to G).

Lemma A.2. Conjugation by T yields an isomorphism H '
∏
i G

i defined over L.

Proof. Denote by p̂ for p ∈ IK the polynomial map

A = diag(A1, . . . , Ad) ∈ ∆n 7→ diag(pφ1(A1), . . . , pφd(Ad)) ∈ ∆1.

We then have the following commutative diagram

Matn(K) K

∆n ∆1

φ

p

φ

p̂

Combing this with the analogous commutative diagram obtained in Section A.1 we
obtain that the diagram

∆n ∆1

V Matd

c−1
T

p̂

c−1
T1

p̃

commutes. Here, T1 is the map attained at the beginning of this section in the
case n = 1 and cT1

is conjugation with T1 defined in analogy to cT . Since
∏
i G

i is
defined as a subvariety of ∆n by the vanishing of p̂ for p ∈ IK and H is defined as
a subvariety of V by the vanishing of p̃ for p ∈ IK this proves the lemma. �

Theorem A.3 (Restriction of scalars). Let K ⊂ C be a number field, let φi : K →
C for i = 1, . . . , d be the complex embeddings of K and let L/K be the Galois closure
of K. We may suppose that φ1 = id.

Let G be a linear algebraic group defined over K. Then there exists a linear
algebraic group ResK/Q(G) defined over Q with the following properties:

(i) For any Q-algebra A we have an isomorphism ι : G(K⊗A)→ ResK/Q(G)(A).

(ii) Over L the group ResK/Q(G) is isomorphic to the L-group
∏
i G

φi . The

induced map π1 : ResK/Q(G)→ G = Gφ1 is defined over K and satisfies that
π1 ◦ ι : GQ → GQ is the identity.

(iii) If G is semisimple, then so is ResK/Q(G).

Proof. We have already proven most of the above claims. The observation in (iii)
follows from (ii) as ResK/Q(G)(C) is isomorphic to some power of G(C). To verify
(ii), it suffices now by Lemma A.2 to show that π1 is defined over K. To prove the
claim, we may show that the composition

π1 : V
cT−→ ∆n → Matd

is defined over K where the latter map is the projection onto the first block. It’s
inverse is however given by ι and which is clearly defined over K and so the theorem
follows. �
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Remark A.4 (Restriction of scalars and lattices of integer points). Let OK be the
ring of integers in K and let a1, . . . , ad be a Z-basis6 of O. Then ι satisfies that
ι(g) has integer entries if and only if g ∈ Matn(O). Thus, G(O) is isomorphic to
ResK/Q(G)(Z) under the isomorphism in Theorem A.3(i). The latter is a lattice in
ResK/Q(G)(R) if G is semisimple.
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